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Sample Problem 5.01 One- and two-dimensional forces, puck

Here are examples of how to use Newton’s second law for a 
puck when one or two forces act on it. Parts A, B, and C of 
Fig. 5-3 show three situations in which one or two forces act 
on a puck that moves over frictionless ice along an x axis, 
in one-dimensional  motion. The puck’s mass is m = 0.20 kg. 
Forces F

→
1 and F

→
2 are directed along the axis and have 

 magnitudes F1 = 4.0 N and F2 = 2.0 N. Force  F
→

3 is directed 
at angle θ = 30° and has  magnitude F3 = 1.0 N. In each situ-
ation, what is the  acceleration of the puck?

KEY IDEA

In each situation we can  relate the acceleration a→ to the net force 
F
→

net acting on the puck with Newton’s  second law, F
→

net = m a→.  
However,  because the motion is along only the x axis, we can 
simplify each situation by writing the second law for x compo-
nents only:

 Fnet, x = max. (5-4)

The free-body diagrams for the three situations are also 
given in Fig. 5-3, with the puck represented by a dot.

Situation A: For Fig. 5-3b, where only one horizontal force 
acts, Eq. 5-4 gives us

F1 = max,

which, with given data, yields

 
ax =

F1

m
= 4.0 N

0.20 kg
= 20 m/s2.

 
(Answer)

The positive answer indicates that the acceleration is in the 
positive direction of the x axis.

Situation B: In Fig. 5-3d, two horizontal forces act on the 
puck, F

→
1 in the positive direction of x and F

→
2 in the negative 

direction. Now Eq. 5-4 gives us

F1 − F2 = max,

which, with given data, yields

ax =
F1 − F2

m
= 4.0 N − 2.0 N

0.20 kg
= 10 m/s2.

 (Answer)
Thus, the net force accelerates the puck in the positive direc-
tion of the x axis.

Situation C: In Fig. 5-3f, force F
→

3 is not directed along 
the  direction of the puck’s acceleration; only x component 
F3,x is. (Force F

→
3 is two-dimensional but the  motion is only 

Figure 5-3 In three situations, forces act on a puck that moves 
along an x axis. Free-body diagrams are also shown.
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one- dimensional.) Thus, we write Eq. 5-4 as

 F3,x − F2 = max. (5-5)

From the figure, we see that F3,x = F3 cos θ. Solving for the 
 acceleration and substituting for F3,x yield

 ax =
F3,x − F2

m
=

F3 cos θ − F2

m

 
=

(1.0 N)(cos 30°) − 2.0 N
0.20 kg

= −5.7 m/s2.

 (Answer)

Thus, the net force accelerates the puck in the negative 
direction of the x axis.

Additional examples, video, and practice available at WileyPLUS
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acts on a particle, we can find the force as

 F(x) = − dU(x)
dx

.
 

(8-22)

If U(x) is given on a graph, then at any value of x, the force F(x) is 
the negative of the slope of the curve there and the  kinetic energy 
of the particle is given by

 K(x) = Emec − U(x), (8-24)

where Emec is the mechanical energy of the system. A turning point 
is a point x at which the particle reverses its motion (there, K = 0). 
The particle is in equilibrium at points where the slope of the U(x) 
curve is zero (there,  F(x) = 0).

Work Done on a System by an External Force  Work W 
is energy transferred to or from a system by means of an external 
force acting on the system. When more than one force acts on a 
system, their net work is the transferred energy. When friction is 
not involved, the work done on the system and the change ∆Emec 
in the mechanical energy of the system are equal:

 W = ∆Emec = ∆K + ∆U. (8-26, 8-25)

When a kinetic frictional force acts within the system, then the ther-
mal energy Eth of the system changes. (This energy is associated 
with the random motion of atoms and molecules in the system.) The 
work done on the system is then

 W = ∆Emec + ∆Eth. (8-33)

The change ∆Eth is related to the magnitude fk of the frictional force 
and the magnitude d of the displacement caused by the external 
force by

 ∆Eth = fkd. (8-31)

Conservation of Energy  The total energy E of a system 
(the sum of its mechanical energy and its internal energies, 
 including thermal energy) can change only by amounts of  energy 
that are transferred to or from the system. This experimental fact 
is known as the law of conservation of energy. If work W is done 
on the system, then

 W = ∆E = ∆Emec + ∆Eth + ∆Eint. (8-35)

If the system is isolated (W = 0), this gives

 ∆Emec + ∆Eth + ∆Eint = 0 (8-36)

and Emec,2 = Emec,1 − ∆Eth − ∆Eint, (8-37)

where the subscripts 1 and 2 refer to two different instants.

Power  The power due to a force is the rate at which that force 
transfers energy. If an amount of energy ∆E is transferred by 
a force in an amount of time ∆t, the average power of the force is

 Pavg = ΔE
Δt

.
 

(8-40)

The instantaneous power due to a force is

 P = dE
dt

. (8-41)

1  In Fig. 8-18, a horizontally moving block can take three fric-
tionless routes, differing only in elevation, to reach the dashed  
finish line. Rank the routes according to (a) the speed of the block 
at the finish line and (b) the travel time of the block to the finish 
line, greatest first.

magnitude of the force on the particle, greatest first. What value 
must the mechanical energy Emec of the particle not  exceed if the 
particle is to be (b) trapped in the potential well at the left, (c) 
trapped in the potential well at the right, and (d) able to move 
between the two potential wells but not to the right of point H? 
For the situation of (d), in which of  regions BC, DE, and FG will 
the particle have (e) the greatest kinetic energy and (f) the least 
speed?

3  Figure 8-20 shows one direct 
path and four indirect paths from 
point i to point f. Along the direct 
path and three of the indirect paths, 
only a conservative force Fc acts on 
a certain object. Along the fourth 
indirect path, both Fc and a noncon-
servative force Fnc act on the object. 
The change ∆Emec in the object’s 
mechanical energy (in joules) in going from i to f is  indicated along 
each straight-line segment of the indirect paths. What is ∆Emec (a) 
from i to f along the direct path and (b) due to Fnc along the one 
path where it acts?

4  In Fig. 8-21, a small, initially stationary block is released on a 
frictionless ramp at a height of 3.0 m. Hill heights along the ramp 
are as shown in the figure. The hills have identical circular tops, 
and the block does not fly off any hill. (a) Which hill is the first 
the block cannot cross? (b) What does the block do after failing 
to  cross that hill? Of the hills that the block can cross, on which 
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acceleration acom,x down the ramp. We do this by using Newton’s second law in both 
its linear version (Fnet = Ma) and its angular  version (휏net = I훼).

We start by drawing the forces on the body as shown in Fig. 11-8:

1. The gravitational force F
→

g on the body is directed downward. The tail of the 
vector is placed at the center of mass of the body. The component along the 
ramp is Fg sin θ, which is equal to Mg sin θ.

2. A normal force F
→

N is perpendicular to the ramp. It acts at the point of con-
tact P, but in Fig. 11-8 the vector has been shifted along its direction until its 
tail is at the body’s center of mass.

3. A static frictional force f
→

s acts at the point of contact P and is directed up 
the ramp. (Do you see why? If the body were to slide at P, it would slide down 
the ramp. Thus, the frictional force opposing the sliding must be up the ramp.)

We can write Newton’s second law for components along the x axis in Fig. 11-8 
(Fnet,x = max) as
 fs − Mg sin θ = Macom,x. (11-7)

This equation contains two unknowns, fs and acom,x. (We should not assume that 
fs is at its maximum value fs,max. All we know is that the value of fs is just right for 
the body to roll smoothly down the ramp, without sliding.)

We now wish to apply Newton’s second law in angular form to the body’s 
rotation about its center of mass. First, we shall use Eq. 10-41 (τ = r⊥F) to write 
the torques on the body about that point. The frictional force f

→
s  has moment arm 

R and thus produces a torque Rfs, which is positive because it tends to  rotate the 
body counterclockwise in Fig. 11-8. Forces F

→
g and F

→
N have zero  moment arms 

about the center of mass and thus produce zero torques. So we can write the 
angular form of Newton’s second law (휏net = I훼) about an axis through the body’s 
center of mass as
 Rfs = Icom훼. (11-8)

This equation contains two unknowns, fs and 훼.
Because the body is rolling smoothly, we can use Eq. 11-6 (acom = 훼R) to  relate 

the unknowns acom,x and 훼. But we must be cautious because here acom,x is negative 
(in the negative direction of the x axis) and 훼 is positive (counterclockwise). Thus 
we substitute −acom,x/R for 훼 in Eq. 11-8. Then, solving for fs, we obtain

 fs = −Icom 
acom,x

R2 . (11-9)

Substituting the right side of Eq. 11-9 for fs in Eq. 11-7, we then find

CHAPTER 11 ROLLING, TORQUE, AND ANGULAR MOMENTUM

  acom, x = − 
g sin θ

1 + Icom/MR2 . (11-10)

We can use this equation to find the linear acceleration acom, x of any body rolling 
along an incline of angle θ with the horizontal.

Note that the pull by the gravitational force causes the body to come down 
the ramp, but it is the frictional force that causes the body to rotate and thus roll.  
If you eliminate the friction (by, say, making the ramp slick with ice or grease) or 
arrange for Mg sin θ to exceed fs,max, then you eliminate the smooth rolling and 
the body slides down the ramp.

 Checkpoint 2
Disks A and B are identical and roll across a floor with equal speeds. Then disk A 
rolls up an incline, reaching a maximum height h, and disk B moves up an incline that 
is identical except that it is frictionless. Is the maximum height reached by disk B 
greater than, less than, or equal to h?
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Figure 14-16 Fluid flows at a constant 
speed v through a tube. (a) At time t, fluid 
element e is about to pass the dashed line. 
(b) At time t + ∆t, element e is a distance 
∆x = v ∆t from the dashed line.

ve

ve

(a) Time t

(b) Time t + Δt

Δx

A1

A2

The volume 
�ow per
second here 
must match ...

... the volume �ow
per second here.

Figure 14-17 A tube of flow is defined by 
the streamlines that form the boundary  
of the tube. The volume flow rate must  
be the same for all cross sections of the 
tube of flow.

 Checkpoint 3
The figure shows a pipe and 
gives the volume flow rate 
(in cm3/s) and the direction of 
flow for all but one section. 
What are the volume flow 
rate and the direction of flow 
for that section?

4 8

2 5
6

4

We can use this common volume ∆V to relate the speeds and areas. To do 
so, we first consider Fig. 14-16, which shows a side view of a tube of uniform 
cross-sectional area A. In Fig. 14-16a, a fluid element e is about to pass through 
the dashed line drawn across the tube width. The element’s speed is v, so dur-
ing a time interval ∆t, the element moves along the tube a distance ∆x = v ∆t. 
The volume ∆V of fluid that has passed through the dashed line in that time  
interval ∆t is

 ∆V = A ∆x = Av ∆t. (14-22)

Applying Eq. 14-22 to both the left and right ends of the tube segment in 
Fig. 14-15, we have

∆V = A1v1 ∆t = A2v2 ∆t

or A1v1 = A2v2   (equation of continuity). (14-23)

This relation between speed and cross-sectional area is called the equation of 
continuity for the flow of an ideal fluid. It tells us that the flow speed increases 
when we decrease the cross-sectional area through which the fluid flows. 

Equation 14-23 applies not only to an actual tube but also to any so-called 
tube of flow, or imaginary tube whose boundary consists of streamlines. Such 
a tube acts like a real tube because no fluid element can cross a streamline; 
thus, all the fluid within a tube of flow must remain within its boundary. 
 Figure 14-17 shows a tube of flow in which the cross-sectional area increases 
from area A1 to area A2 along the flow direction. From Eq. 14-23 we know 
that, with the increase in area, the speed must decrease, as is indicated by the 
greater spacing between streamlines at the right in Fig. 14-17. Similarly, you 
can see that in Fig. 14-13 the speed of the flow is greatest just above and just 
below the cylinder.

We can rewrite Eq. 14-23 as

 RV = Av = a constant   (volume flow rate, equation of continuity), (14-24)

in which RV is the volume flow rate of the fluid (volume past a given point per 
unit time). Its SI unit is the cubic meter per second (m3/s). If the density 휌 of the 
fluid is uniform, we can multiply Eq. 14-24 by that density to get the mass flow 
rate Rm (mass per unit time):

 Rm = 휌RV = 휌Av = a constant   (mass flow rate). (14-25)

The SI unit of mass flow rate is the kilogram per second (kg/s). Equation 14-25 
says that the mass that flows into the tube segment of Fig. 14-15 each second must 
be equal to the mass that flows out of that segment each second.
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Detector Moving, Source Stationary
In Fig. 17-19, a detector D (represented by an ear) is moving at speed vD toward 
a  stationary source S that emits spherical wavefronts, of wavelength λ and  
frequency f, moving at the speed v of sound in air. The wavefronts are drawn one 
wavelength apart. The frequency detected by detector D is the rate at which D 
 intercepts wavefronts (or individual wavelengths). If D were stationary, that rate 
would be f, but since D is moving into the wavefronts, the rate of interception is 
greater, and thus the detected frequency f ′ is greater than f.

Let us for the moment consider the situation in which D is stationary 
(Fig. 17-20). In time t, the wavefronts move to the right a distance vt. The num-
ber of wavelengths in that distance vt is the number of wavelengths intercepted 
by D in time t, and that number is vt/λ. The rate at which D intercepts wave-
lengths, which is the frequency f detected by D, is

 f = vt/λ
t

= v
λ

. (17-48)

In this situation, with D stationary, there is no Doppler effect— the frequency 
 detected by D is the frequency emitted by S.

Now let us again consider the situation in which D moves in the direction 
 opposite the wavefront velocity (Fig. 17-21). In time t, the wavefronts move to 
the  right a distance vt as previously, but now D moves to the left a distance 
vDt. Thus, in this time t, the distance moved by the wavefronts relative to D is  
vt + vDt. The number of wavelengths in this relative distance vt + vDt is the 
number of wavelengths intercepted by D in time t and is (vt + vDt)/λ. The rate at 
which D intercepts wavelengths in this situation is the frequency f ′, given by

 f ′ = (vt + vDt)/λ
t

= v + vD

λ
. (17-49)

From Eq. 17-48, we have λ = v/f. Then Eq. 17-49 becomes

 f ′ = v + vD

v/f
= f 

v + vD

v
. (17-50)

Note that in Eq. 17-50, f ′ > f unless vD = 0 (the detector is  stationary).
Similarly, we can find the frequency detected by D if D moves away from 

the source. In this situation, the wavefronts move a distance vt − vDt relative to 
D in time t, and f ′ is given by

 f ′ = f 
v − vD

v
. (17-51)

In Eq. 17-51, f ′ <  f unless vD = 0. We can summarize Eqs. 17-50 and 17-51 with

 f ′ = f 
v ± vD

v
 (detector moving, source stationary). (17-52)

Figure 17-19 A stationary source of 
sound S emits spherical wavefronts, 
shown one wavelength apart, that 
expand outward at speed v. A sound  
detector D, represented by an ear, 
moves with velocity v→D toward the 
source. The detector senses a higher 
frequency  because of its motion.

λ vS = 0

S
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Dλ

vD

vv

Shift up: The detector
moves toward the source.

Figure 17-20 The wavefronts of Fig. 17-19, 
assumed planar, (a) reach and (b) pass  
a  stationary detector D; they move a 
 distance vt to the right in time t.
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λ

Figure 17-21 Wavefronts traveling to the 
right (a) reach and (b) pass detector D, 
which moves in the opposite direction. In 
time t, the wavefronts move a distance vt 
to the right and D moves a distance vDt to 
the left.
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You should verify the multiplicities for all the configurations in Table 20-1.
The basic assumption of statistical mechanics is that

Figure 20-18 For a large number of mol-
ecules in a box, a plot of the number of 
microstates that require various percentages 
of the molecules to be in the left half of the 
box. Nearly all the microstates correspond 
to an approximately equal sharing of the 
molecules  between the two halves of the 
box; those microstates form the central 
configuration peak on the plot. For N ≈ 1022, 
the central configuration peak is much too 
narrow to be drawn on this plot.
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In other words, if we were to take a great many snapshots of the six molecules as 
they jostle around in the box of Fig. 20-17 and then count the number of times 
each microstate occurred, we would find that all 64 microstates would occur 
equally often. Thus the system will spend, on average, the same amount of time 
in each of the 64 microstates.

Because all microstates are equally probable but different configurations 
have different numbers of microstates, the configurations are not all equally 
probable. In Table 20-1 configuration IV, with 20 microstates, is the most prob-
able configuration, with a probability of 20/64 = 0.313. This result means that the 
system is in configuration IV 31.3% of the time. Configurations I and VII, in 
which all the molecules are in one half of the box, are the least probable, each 
with a probability of 1/64 = 0.016 or 1.6%. It is not surprising that the most prob-
able configuration is the one in which the molecules are evenly divided between 
the two halves of the box, because that is what we expect at thermal equilibrium. 
However, it is surprising that there is any probability, however small, of finding 
all six molecules clustered in half of the box, with the other half empty.

For large values of N there are extremely large numbers of microstates, but 
nearly all the microstates belong to the configuration in which the molecules are 
divided equally between the two halves of the box, as Fig. 20-18 indicates. Even 
though the measured temperature and pressure of the gas remain constant, the 
gas is churning away endlessly as its molecules “visit” all probable microstates 
with equal probability. However, because so few microstates lie outside the very 
narrow central configuration peak of Fig. 20-18, we might as well assume that the 
gas molecules are always divided equally between the two halves of the box. As 
we shall see, this is the configuration with the greatest entropy.

Similarly, for the configuration (100, 0), we have

W = N!
n1! n2!

= 100!
100! 0!

= 1
0!

= 1
1

= 1. (Answer)

The meaning: Thus, a 50 – 50 distribution is more likely 
than a 100 – 0 distribution by the enormous factor of about 
1 × 1029. If you could count, at one per nanosecond, the 
number of microstates that correspond to the 50– 50 dis-
tribution, it would take you about 3 × 1012 years, which is 
about 200 times longer than the age of the universe. Keep 
in mind that the 100 molecules used in this sample prob-
lem is a very small number. Imagine what these calcu-
lated probabilities would be like for a mole of molecules, 
say about N = 1024. Thus, you need never worry about 
suddenly finding all the air molecules clustering in one 
corner of your room, with you gasping for air in another 
corner. So, you can breathe easy because of the physics 
of entropy.

Sample Problem 20.05 Microstates and multiplicity

Suppose that there are 100 indistinguishable molecules in the 
box of Fig. 20-17. How many microstates are associated with the 
configuration n1 = 50 and n2 = 50, and with the configuration  
n1 = 100 and n2 = 0? Interpret the results in terms of the relative 
probabilities of the two configurations.

KEY IDEA

The multiplicity W of a configuration of indistinguishable 
molecules in a closed box is the number of independent 
microstates with that configuration, as given by Eq. 20-20. 

Calculations: Thus, for the (n1, n2) configuration (50, 50), 

 
W = N!

n1! n2!
= 100!

50! 50!

 = 9.33 × 10157

(3.04 × 1064)(3.04 × 1064)

 = 1.01 × 1029. (Answer)

Additional examples, video, and practice available at WileyPLUS

All microstates are equally probable.
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Since the charge on the rod is positive and we have taken V = 0 at infinity, we 
know from Module 24-3 that dV in Eq. 24-34 must be positive.

We now find the total potential V produced by the rod at point P by integrat-
ing Eq. 24-34 along the length of the rod, from x = 0 to x = L (Figs. 24-15d and e), 
using integral 17 in Appendix E. We find

 V = ∫ dV = ∫
L

0

1
4πε0

 
λ

(x2 + d2)1/2  dx

 = λ
4πε0

∫
L

0

dx

(x2 + d2)1/2

 = λ
4πε0

 [ ln(x + (x2 + d2)1/2) ]
0

L

 = λ
4πε0

 [ ln(L + (L2 + d2)1/2) − ln d] .

We can simplify this result by using the general relation ln A − ln B = ln(A/B). 
We then find

 V = λ
4πε0

 ln [ L + (L2 + d2)1/2

d ] . (24-35)

Because V is the sum of positive values of dV, it too is positive, consistent with 
the logarithm being positive for an argument greater than 1.

Charged Disk
In Module 22-5, we calculated the magnitude of the electric field at points on the 
central axis of a plastic disk of radius R that has a uniform charge density σ on one 
surface. Here we derive an expression for V(z), the electric potential at any point 
on the central axis. Because we have a circular distribution of charge on the disk, 
we could start with a differential element that occupies angle dθ  and radial dis-
tance dr. We would then need to set up a two-dimensional integration. However, 
let’s do something easier.

In Fig. 24-16, consider a differential element consisting of a flat ring of radius 
Rʹ and radial width dRʹ. Its charge has magnitude

dq = σ(2πRʹ)(dRʹ),

in which (2πRʹ)(dRʹ) is the upper surface area of the ring. All parts of this charged 
element are the same distance r from point P on the disk’s axis. With the aid of 
Fig. 24-16, we can use Eq. 24-31 to write the contribution of this ring to the elec-
tric potential at P as

 dV = 1
4πε0

 
dq
r

= 1
4πε0

 
σ(2πR′)(dR′)

√z2 + R′2
. (24-36)

We find the net potential at P by adding (via integration) the contributions of all 
the rings from Rʹ = 0 to Rʹ = R:

 V = ∫ dV = σ
2ε0

 ∫
R

0
 

R′ dR′
√z2 + R′2

= σ
2ε0

 (√z2 + R2 − z). (24-37)

Note that the variable in the second integral of Eq. 24-37 is Rʹ and not z, which 
remains constant while the integration over the surface of the disk is carried out. 
(Note also that, in evaluating the integral, we have assumed that z ≥ 0.)

zr

P

R'

R
dR'

Every charge element
in the ring contributes
to the potential at P. 

Figure 24-16 A plastic disk of radius R, 
charged on its top surface to a uniform 
surface charge density σ. We wish to 
find the potential V at point P on the 
central axis of the disk.
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73 SSM  Wires A and B, having equal lengths of 40.0 m and 
equal diameters of 2.60 mm, are connected in series. A potential 
 difference of 60.0 V is applied between the ends of the  composite 
wire. The resistances are RA = 0.127 Ω and RB = 0.729 Ω. For wire 
A, what are (a) magnitude J of the current density and (b) potential 
difference V? (c) Of what type  material is wire A made (see Table 
26-1)? For wire B, what are (d) J and (e) V? (f) Of what type mate-
rial is B made?

74  What are the (a) size and (b) direction (up or down) of cur-
rent i in Fig. 27-71, where all resistances are 4.0 Ω and all batteries 
are ideal and have an emf of 10 V? (Hint: This can be answered 
using only mental calculation.)

ideal battery has emf ℰ = 20.0 V. First, the switch is closed a long 
time so that the steady state is reached. Then the switch is opened 
at time t = 0. What is the current in resistor 2 at t = 4.00 ms? 

••66  Figure 27-67 displays two 
circuits with a charged  capacitor 
that is to be discharged through 
a resistor when a switch is closed. 
In Fig.  27-67a, R1 = 20.0 Ω and 
C1 = 5.00 μF. In Fig. 27-67b, 
R2 = 10.0 Ω and C2 = 8.00 μF. The 
ratio of the initial charges on the two 
capacitors is q02/q01 = 1.50. At time t = 0, both switches are closed. 
At what time t do the two capacitors have the same charge?

••67  The potential difference between the plates of a leaky 
(meaning that charge leaks from one plate to the other) 2.0 μF 
 capacitor drops to one-fourth its initial value in 2.0 s. What is the 
equivalent resistance between the capacitor plates?

••68  A 1.0 μF capacitor with an initial stored energy of 0.50 J is 
discharged through a 1.0 MΩ resistor. (a) What is the initial charge 
on the capacitor? (b) What is the current through the resistor when 
the discharge starts? Find an  expression that gives, as a function of 
time t, (c) the potential difference VC across the capacitor, (d) the 
potential difference VR across the resistor, and (e) the rate at which 
thermal  energy is produced in the resistor.

•••69  A 3.00 MΩ resistor and a 1.00 μF capacitor are  connected 
in series with an ideal battery of emf ℰ = 4.00 V. At 1.00 s after the 
connection is made, what is the rate at which (a) the charge of the 
capacitor is increasing, (b) energy is  being stored in the capacitor, 
(c) thermal energy is appear ing in the resistor, and (d) energy is 
being delivered by the battery?

Additional Problems
70  Each of the six real batteries in 
Fig. 27-68 has an emf of 20 V and a resistance 
of 4.0 Ω. (a) What is the current through the 
(external) resistance R = 4.0 Ω? (b) What is 
the potential difference across each battery? 
(c) What is the power of each battery? (d) At 
what rate does each battery transfer energy 
to internal thermal energy?

71  In Fig. 27-69, R1 = 20.0 Ω, R2 =  
10.0 Ω, and the ideal battery has emf 
ℰ = 120 V. What is the current at 
point a if we close (a) only switch S1, 
(b) only switches S1 and S2, and (c) all 
three switches?

72  In Fig. 27-70, the ideal battery 
has emf ℰ = 30.0 V, and the resis-
tances are R1 = R2 = 14 Ω, R3 = R4 =  
R5 = 6.0 Ω, R6 = 2.0 Ω, and R7 =  
1.5 Ω. What are currents (a) i2, (b) i4, (c) i1, (d) i3, and (e) i5?

C2R1 R2C1

(a) (b)

Figure 27-67 Problem 66.
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75  Suppose that, while you are sitting in a chair, charge 
 separation between your clothing and the chair puts you at a 
 potential of 200 V, with the capacitance  between you and the 
chair at 150 pF. When you stand up, the  increased separation 
between your body and the chair  decreases the capacitance to 
10 pF. (a) What then is the potential of your body? That poten-
tial is  reduced over time, as the charge on you drains through 
your body and shoes (you are a capacitor discharging through 
a resistance). Assume that the resistance along that route 
is 300 GΩ. If you touch an electrical component while your 
potential is greater than 100 V, you could ruin the component.  
(b) How long must you wait until your potential reaches the safe 
level of 100 V?

If you wear a conducting wrist strap that is connected to 
ground, your potential does not increase as much when you stand 
up; you also discharge more rapidly because the resistance through 
the grounding connection is much less than through your body and 
shoes. (c) Suppose that when you stand up, your potential is 1400 V 
and the chair-to-you capacitance is 10 pF. What resistance in that 
wrist-strap grounding connection will allow you to discharge to 
100 V in 0.30 s, which is less time than you would need to reach for, 
say, your computer?

76  In Fig. 27-72, the ideal batteries have emfs ℰ1 = 20.0 V,  
ℰ2 = 10.0 V, and ℰ3 = 5.00 V, and the resistances are each 
2.00 Ω. What are the (a) size and (b) direction (left or right) of cur-
rent i1? (c) Does battery 1 supply or absorb energy, and (d) what 
is its power? (e) Does battery 2 supply or absorb  energy, and  
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t = 0. (a) How much energy is delivered by the battery during the 
first 2.00 s? (b) How much of this energy is stored in the magnetic 
field of the inductor? (c) How much of this  energy is dissipated in 
the resistor?

Module 30-8  Energy Density of a Magnetic Field
•66  A circular loop of wire 50 mm in radius carries a current of 
100 A. Find the (a) magnetic field strength and (b) energy density 
at the center of the loop.

•67 SSM  A solenoid that is 85.0 cm long has a cross-sectional 
area of 17.0 cm2. There are 950 turns of wire carrying a current of 
6.60 A. (a) Calculate the energy density of the magnetic field inside 
the solenoid. (b) Find the total energy stored in the magnetic field 
there (neglect end effects).

•68  A toroidal inductor with an inductance of 90.0 mH  encloses 
a volume of 0.0200 m3. If the average energy density in the toroid 
is 70.0 J/m3, what is the current through the  inductor?

•69 ILW  What must be the magnitude of a uniform electric field 
if it is to have the same energy density as that possessed by a 0.50 T 
magnetic field?

••70  Figure 30-67a shows, in 
cross section, two wires that are 
straight, parallel, and very long. 
The ratio i1/i2 of the current carried 
by wire 1 to that carried by wire 2 is 
1/3. Wire 1 is fixed in place. Wire 2  
can be moved along the positive 
side of the x  axis so as to change 
the magnetic energy density uB 
set up by the two currents at the 
origin. Figure 30-67b gives uB as a 
function of the position x of wire 2.  
The curve has an asymptote of 
uB = 1.96 nJ/m3 as x → ∞, and 
the horizontal axis scale is set by 
xs = 60.0 cm. What is the value of 
(a) i1 and (b) i2?

••71  A length of copper wire carries a current of 10 A uniformly 
distributed through its cross section. Calculate the  energy density 
of (a) the magnetic field and (b) the electric field at the surface of 
the wire. The wire diameter is 2.5 mm, and its resistance per unit 
length is 3.3 Ω/km.

Module 30-9  Mutual Induction
•72  Coil 1 has L1 = 25 mH and N1 = 100 turns. Coil 2 has 
L2 = 40 mH and N2 = 200 turns. The coils are fixed in place; their 
mutual inductance M is 3.0 mH. A 6.0 mA current in coil 1 is 
changing at the rate of 4.0 A/s. (a) What magnetic flux Φ12  links 
coil 1, and (b) what self-induced emf appears in that coil? (c) What 
magnetic flux Φ21 links coil 2, and (d) what  mutually induced emf 
appears in that coil?

•73 SSM  Two coils are at fixed locations. When coil 1 has no 
 current and the current in coil 2 increases at the rate 15.0 A/s, 
the emf in coil 1 is 25.0 mV. (a) What is their mutual inductance? 
(b) When coil 2 has no current and coil 1 has a current of 3.60 A, 
what is the flux linkage in coil 2?

•74  Two solenoids are part of the spark coil of an automobile. 
When the current in one solenoid falls from 6.0 A to zero in 2.5 ms, 
an emf of 30 kV is induced in the other solenoid. What is the 
 mutual inductance M of the solenoids?

Figure 30-67 Problem 70.
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axis scale is set by Φs = 4.0 × 10–4 T· m2, and the horizontal axis scale 
is set by is = 2.00 A. If switch S is closed at time t = 0, at what rate 
di/dt will the  current be changing at t = 1.5τL?

••57  In Fig. 30-65, R = 15 Ω, 
L = 5.0 H, the ideal battery has 
ℰ = 10 V, and the fuse in the upper 
branch is an ideal 3.0 A fuse. It has 
zero resistance as long as the cur-
rent through it  remains less than 
3.0 A. If the  current reaches 3.0 A, 
the fuse “blows” and thereafter has 
infinite resistance. Switch S is closed 
at time t = 0. (a) When does the fuse blow? (Hint: Equation 30-41 
does not apply. Rethink Eq. 30-39.) (b) Sketch a graph of the cur-
rent i through the inductor as a function of time. Mark the time at 
which the fuse blows.

••58  Suppose the emf of the battery in the circuit shown 
in Fig. 30-16 varies with time t so that the current is given by 
i(t) = 3.0 + 5.0t, where i is in amperes and t is in seconds. Take 
R = 4.0 Ω and L = 6.0 H, and find an expression for the battery 
emf as a function of t. (Hint: Apply the loop rule.)

•••59 SSM  WWW  In Fig. 30-66, 
 after switch S is closed at time t = 0, 
the emf of the source is automati-
cally adjusted to maintain a  constant 
current i through S. (a) Find the cur-
rent through the inductor as a func-
tion of time. (b) At what time is the 
current through the resistor equal to 
the current through the inductor?

•••60  A wooden toroidal core with a square cross section has an 
inner radius of 10 cm and an outer radius of 12 cm. It is wound with 
one layer of wire (of diameter 1.0 mm and resistance per meter 
0.020 Ω/m). What are (a) the inductance and (b) the inductive time 
constant of the resulting toroid? Ignore the thickness of the insula-
tion on the wire.

Module 30-7  Energy Stored in a Magnetic Field
•61 SSM  A coil is connected in series with a 10.0 kΩ resistor. An 
ideal 50.0 V battery is applied across the two devices, and the cur-
rent reaches a value of 2.00 mA after 5.00 ms. (a) Find the induc-
tance of the coil. (b) How much energy is stored in the coil at this 
same moment?

•62  A coil with an inductance of 2.0 H and a resistance of 10 Ω 
is suddenly connected to an ideal battery with ℰ = 100 V. At 0.10 s 
after the connection is made, what is the rate at which (a) energy is 
being stored in the magnetic field, (b) thermal energy is appearing 
in the resistance, and (c) energy is  being delivered by the battery?

•63 ILW  At t = 0, a battery is connected to a series arrangement 
of a resistor and an inductor. If the inductive time constant is 
37.0 ms, at what time is the rate at which energy is dissipated in the 
resistor equal to the rate at which energy is stored in the inductor’s 
magnetic field?

•64  At t = 0, a battery is connected to a series arrangement of 
a resistor and an inductor. At what multiple of the inductive time 
constant will the energy stored in the inductor’s magnetic field be 
0.500 its steady-state value?

••65  For the circuit of Fig. 30-16, assume that ℰ = 10.0 V, 
R = 6.70 Ω, and L = 5.50 H. The ideal battery is connected at time 
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12  In Fig. 33-35, light travels from 
material a, through three layers of 
other materials with surfaces paral-
lel to one another, and then back 
into another layer of material a. The 
refractions (but not the associated 
reflections) at the surfaces are shown. 
Rank the materials  according to 
index of refraction, greatest first. 
(Hint: The parallel arrangement of 
the surfaces allows comparison.)

1000 CHAPTER 33 ELECTROMAGNETIC WAVES

1  If the magnetic field of a light wave oscillates parallel to a  
y axis and is given by By = Bm sin(kz – ωt), (a) in what  direction 
does the wave travel and (b) parallel to which axis does the 
 associated electric field oscillate?

2  Suppose we rotate the second 
sheet in Fig. 33-15a, starting with the 
polarization direction aligned with 
the y axis (θ = 0) and  ending with 
it aligned with the x axis (θ = 90°). 
Which of the four curves in Fig. 33-26 best shows the intensity of 
the light through the three-sheet system  during this 90°  rotation?

3  (a) Figure 33-27 shows light reach-
ing a polarizing sheet whose polarizing 
direction is parallel to a y axis. We shall 
 rotate the sheet 40° clockwise about the 
light’s indicated line  of travel. During 
this rotation, does the fraction of the 
 initial light intensity passed by the sheet 
increase, decrease, or   remain the same 
if the light is (a)  initially unpolarized, 
(b)  initially polarized parallel to the  
x axis, and (c) initially  polarized parallel 
to the y axis?

4  Figure 33-28 shows the electric and magnetic 
fields of an  electromagnetic wave at a certain 
instant. Is the wave  traveling into the page or out 
of the page?

5  In the arrangement of Fig. 33-15a, start 
with light that is initially  polarized parallel to the x axis, and 
write the  ratio of its final intensity I3 to its initial intensity I0 as 
I3/I0 = A cosn θ. What are A, n, and θ if we rotate the polarizing 
 direction of the first sheet (a) 60° counterclockwise and (b) 90° 
clockwise from what is shown?

6  In Fig. 33-29, unpolarized light is 
sent into a system of five polarizing 
sheets. Their polarizing directions, 
measured counterclockwise from the 
positive direction of the y axis, are 
the following: sheet 1, 35°; sheet 2,  
0°; sheet 3, 0°; sheet 4, 110°; sheet 5,  
45°. Sheet 3 is then rotated 180° 
counterclockwise about the light ray. 
During that rotation, at what angles 
(mea sured counterclockwise from 
the y axis) is the transmission of light 
through the system eliminated?

7  Figure 33-30 shows rays of 
monochromatic light propagating 
through three materials a, b, and c. 
Rank the materials according to the 
index of refraction, greatest first.

8  Figure 33-31 shows the multiple 
reflections of a light ray along a 
glass corridor where the walls are 
either parallel or perpendicular to 
one another. If the angle of incidence at point a is 30°, what are the 
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angles of reflection of the light ray at 
points b, c, d, e, and f ?

9  Figure 33-32 shows four long 
horizontal layers A– D of different 
materials, with air above and below 
them. The index of refraction of each 
material is given. Rays of light are 
sent into the left end of each layer as 
shown. In which layer is there the pos-
sibility of totally trapping the light in 
that layer so that, after many reflec-
tions, all the light reaches the right 
end of the layer?

10  The leftmost block in Fig. 33-33 
depicts total internal  reflection for 
light inside a material with an index 
of refraction n1 when air is outside the 
material. A light ray reaching point A  
from anywhere within the shaded 
region at the left (such as the ray shown) fully reflects at that point 
and ends up in the shaded region at the right. The other blocks show 
similar situations for two other materials. Rank the indexes of refrac-
tion of the three materials, greatest first.
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11  Each part of Fig. 33-34 shows light that refracts through an 
 interface between two materials. The incident ray (shown gray in 
the figure) consists of red and blue light. The approximate index 
of  refraction for visible light is indicated for each material. Which 
of the three parts show physically possible  refraction? (Hint: First 
consider the refraction in general, regardless of the color, and then 
consider how red and blue light refract differently.)
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of the pattern.

The higher orders are
spread out more in angle.

Figure 36-24 The zeroth, first, second, and fourth orders of the visible emission lines 
from hydrogen. Note that the lines are farther apart at greater angles. (They are also 
dimmer and wider, although that is not shown here.)

We state without proof that the half-width of any other line depends on its loca-
tion relative to the central axis and is

 Δθhw = λ
Nd cos θ

  (half-width of line at θ). (36-28)

Note that for light of a given wavelength λ and a given ruling separation d, the 
widths of the lines decrease with an increase in the number N of rulings. Thus, 
of two diffraction gratings, the grating with the larger value of N is better able to  
distinguish between wavelengths because its diffraction lines are narrower and so 
produce less overlap.

Grating Spectroscope
Diffraction gratings are widely used to determine the wavelengths that are emit-
ted by sources of light ranging from lamps to stars. Figure 36-23 shows a sim-
ple grating spectroscope in which a grating is used for this purpose. Light from 
source S is focused by lens L1 on a vertical slit S1 placed in the focal plane of 
lens L2. The light emerging from tube C (called a collimator) is a plane wave and 
is  incident perpendicularly on grating G, where it is diffracted into a diffraction 
 pattern, with the m = 0 order diffracted at angle θ = 0 along the central axis of 
the grating.

We can view the diffraction pattern that would appear on a viewing screen at 
any angle θ simply by orienting telescope T in Fig. 36-23 to that angle. Lens L3 of 
the telescope then focuses the light diffracted at angle θ (and at slightly smaller 
and larger angles) onto a focal plane FF ʹ within the telescope. When we look 
through eyepiece E, we see a magnified view of this focused image.

By changing the angle θ of the telescope, we can examine the entire diffrac-
tion pattern. For any order number other than m = 0, the original light is spread 
out according to wavelength (or color) so that we can determine, with Eq. 36-25, 
just what wavelengths are being emitted by the source. If the source emits  discrete 
wavelengths, what we see as we rotate the telescope horizontally through the angles 
 corresponding to an order m is a vertical line of color for each wavelength, with the 
shorter-wavelength line at a smaller angle θ than the longer-wavelength line.

Hydrogen. For example, the light emitted by a hydrogen lamp, which con-
tains hydrogen gas, has four discrete wavelengths in the visible range. If our eyes 
intercept this light directly, it appears to be white. If, instead, we view it through 
a grating  spectroscope, we can distinguish, in several orders, the lines of the four 
colors  corresponding to these visible wavelengths. (Such lines are called emission 
lines.) Four orders are represented in Fig. 36-24. In the central order (m = 0), 
the lines corresponding to all four wavelengths are superimposed, giving a single 
white line at θ = 0. The colors are separated in the higher orders.

The third order is not shown in Fig. 36-24 for the sake of clarity; it actu-
ally overlaps the second and fourth orders. The fourth-order red line is missing 
 because it is not formed by the grating used here. That is, when we attempt to 

Figure 36-23 A simple type of grating spec-
troscope used to analyze the wavelengths 
of light emitted by source S.
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Two- and Three-Dimensional Electron Traps
In the next module, we shall discuss the hydrogen atom as being a three- 
dimensional finite potential well. As a warm-up for the hydrogen atom, let us 
 extend our discussion of infinite potential wells to two and three dimensions.

Rectangular Corral
Figure 39-13 shows the rectangular area to which an electron can be confined by 
the two-dimensional version of Fig. 39-2— a two-dimensional infinite potential 
well of widths Lx and Ly that forms a rectangular corral. The corral might be on 
the surface of a body that somehow prevents the electron from moving paral-
lel to the z axis and thus from leaving the surface. You have to imagine infinite 
 potential energy functions (like U(x) in Fig. 39-2) along each side of the corral, 
keeping the electron within the corral.

Solution of Schrödinger’s equation for the rectangular corral of Fig. 39-13 
shows that, for the electron to be trapped, its matter wave must fit into each of 
the two widths separately, just as the matter wave of a trapped electron must fit 
into a one-dimensional infinite well. This means the wave is separately quantized 
in width Lx and in width Ly. Let nx be the quantum number for which the matter 
wave fits into width Lx, and let ny be the quantum number for which the matter 
wave fits into width Ly. As with a one-dimensional potential well, these quantum 
numbers can be only positive integers. We can extend Eqs. 39-10 and 39-17 to 
write the normalized wave function as

 ψnx,ny = √ 2
Lx

 sin ( nxπ
L

 x)  √ 2
Ly

 sin( nyπ
L

 y) , (39-19)

The energy of the electron depends on both quantum numbers and is the sum 
of the energy the electron would have if it were confined along the x axis alone 
and the energy it would have if it were confined along the y axis alone. From 
Eq. 39-4, we can write this sum as

 Enx,ny = ( h2

8mLx
2 )nx

2 + ( h2

8mLy
2 )ny

2 = h2

8m
 ( nx

2

Lx
2 +

ny
2

Ly
2 ) . (39-20)

Excitation of the electron by photon absorption and de-excitation of the 
electron by photon emission have the same requirements as for one-dimensional 
traps. Now, however, two quantum numbers (nx and ny) are involved. Because 
of that, different states might have the same energy; such states and their energy 
levels are said to be degenerate.

Rectangular Box
An electron can also be trapped in a three-dimensional infinite potential well—
a box. If the box is rectangular as in Fig. 39-14, then Schrödinger’s equation shows 
us that we can write the energy of the electron as

 Enx,ny,nz = h2

8m
 ( nx

2

Lx
2 +

ny
2

Ly
2 + nz

2

Lz
2 ) . (39-21)

Here nz is a third quantum number, for fitting the matter wave into width Lz.
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Figure 39-13 A rectangular corral —a  
two-dimensional version of the infinite  
potential well of Fig. 39-2— with widths 
Lx and Ly.
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Figure 39-14 A rectangular box—a  
three-dimensional version of the infinite 
potential well of Fig. 39-2— with widths  
Lx, Ly, and Lz.

 Checkpoint 4
In the notation of Eq. 39-20, is E0,0, E1,0, E0,1, or E1,1 the ground-state energy of an 
electron in a (two-dimensional) rectangular corral?
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Calculation: Substituting that uncertainty of 0.20 eV into 
Eq. 42-36 gives us

  Δt = tavg ≈ ℏ
ΔE

≈ (4.14 × 10−15 eV · s)/2π
0.20 eV

  ≈ 3 × 10−15 s.  (Answer)

This is several hundred times greater than the time a 5.2 eV 
neutron takes to cross the diameter of a 109Ag nucleus. 
There fore, the neutron is spending this time of 3 × 10–15 s 
as part of the nucleus.

Sample Problem 42.09 Lifetime of a compound nucleus made by neutron capture

Consider the neutron capture reaction

 109Ag + n → 110Ag → 110Ag + γ, (42-35)

in which a compound nucleus (110Ag) is formed. Figure 
42-15 shows the relative rate at which such events take 
place, plotted against the energy of the incoming neutron. 
Find the mean lifetime of this compound nucleus by using 
the uncertainty principle in the form

 ΔE · Δt ≈ ℏ. (42-36)

Here ΔE is a measure of the uncertainty with which the 
 energy of a state can be defined. The quantity Δt is a mea-
sure of the time available to measure this energy. In fact, 
here Δt is just tavg, the average life of the compound nucleus 
before it  decays to its ground state.

Reasoning: We see that the relative reaction rate peaks 
sharply at a neutron energy of about 5.2 eV. This suggests 
that we are dealing with a single excited energy level of the 
compound nucleus 110Ag. When the available energy (of the 
incoming neutron) just matches the energy of this level above 
the 110Ag ground state, we have “resonance” and the reaction 
of Eq. 42-35 really “goes.”

However, the resonance peak is not infinitely sharp but has 
an approximate half-width (ΔE in the figure) of about 0.20 eV. 
We can account for this resonance-peak width by saying that the 
excited level is not sharply defined in energy but has an energy 
uncertainty ΔE of about 0.20 eV. 

Additional examples, video, and practice available at WileyPLUS

Figure 42-15 A plot of the relative number of reaction events of the 
type described by Eq. 42-35 as a function of the energy of the incident 
neutron. The half-width ΔE of the  resonance peak is about 0.20 eV.
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Here the energy of the
incident neutron matches
the excited state energy
of the nucleus.

The Nuclides  Approximately 2000 nuclides are known to exist. 
Each is characterized by an atomic number Z (the number of pro-
tons), a neutron number N, and a mass number A (the total number 
of nucleons—protons and neutrons). Thus, A = Z + N. Nuclides 
with the same atomic number but different neutron numbers are 
isotopes of one another. Nuclei have a mean radius r given by

 r = r0A1/3, (42-3)

where r0 ≈ 1.2 fm.

Mass and Binding Energy  Atomic masses are often reported 

Review & Summary

in terms of mass excess

 Δ = M – A (mass excess), (42-6)

where M is the actual mass of an atom in atomic mass units and A 
is the mass number for that atom’s nucleus. The binding energy of 
a nucleus is the difference

 ΔEbe = Σ(mc2) – Mc2 (binding energy), (42-7)

where Σ(mc2) is the total mass energy of the individual protons 
and neutrons. The binding energy per nucleon is

 established by the central core, thus preserving the central feature of the 
 independent-particle model. These outside nucleons also interact with the 
core, deforming it and setting up “tidal wave” motions of rotation or vibra-
tion within it. These collective motions of the core preserve the central feature 
of the collective model. Such a model of nuclear structure thus succeeds in 
combining the seemingly irreconcilable points of view of the collective and 
 independent-particle models. It has been remarkably successful in explaining 
observed nuclear properties.



SOME ASTRONOMICAL DATA

A-4

Some Distances from Earth

To the Moon* 3.82 × 10 8 m To the center of our galaxy 2.2 × 10 20 m
To the Sun* 1.50 × 10 11 m To the Andromeda Galaxy 2.1 × 10 22 m
To the nearest star (Proxima Centauri) 4.04 × 10 16 m To the edge of the observable universe  ∼1026 m

*Mean distance.

The Sun, Earth, and the Moon

 Property Unit Sun Earth Moon

Mass kg 1.99 × 10 30 5.98 × 10 24 7.36 × 1022

Mean radius m 6.96 × 10 8 6.37 × 10 6 1.74 × 106

Mean density kg/m3 1410 5520 3340
Free-fall acceleration at the surface m/s2 274 9.81 1.67
Escape velocity km/s 618 11.2 2.38
Period of rotationa — 37 d at polesb  26 d at equatorb 23 h 56 min 27.3 d
Radiation powerc W 3.90 × 10 26

aMeasured with respect to the distant stars.
bThe Sun, a ball of gas, does not rotate as a rigid body.
cJust outside Earth’s atmosphere solar energy is received, assuming normal incidence, at the rate of 1340 W/m2.

Some Properties of the Planets

  Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Plutod

Mean distance from Sun,  
  106 km 

57.9 108 150 228 778 1430 2870 4500 5900

Period of revolution, y 0.241 0.615 1.00 1.88 11.9 29.5 84.0 165 248

Period of rotation,a d 58.7 −243b 0.997 1.03 0.409 0.426 −0.451b 0.658 6.39

Orbital speed, km/s 47.9 35.0 29.8 24.1 13.1 9.64 6.81 5.43 4.74

Inclination of axis to orbit <28° ≈3° 23.4° 25.0° 3.08° 26.7° 97.9° 29.6° 57.5°

Inclination of orbit to  
  Earth’s orbit 

7.00° 3.39°  1.85° 1.30° 2.49° 0.77° 1.77° 17.2°

Eccentricity of orbit 0.206 0.0068 0.0167 0.0934 0.0485 0.0556 0.0472 0.0086 0.250

Equatorial diameter, km 4880 12 100 12 800 6790 143 000 120 000 51 800 49 500 2300

Mass (Earth = 1) 0.0558 0.815 1.000 0.107 318 95.1 14.5 17.2 0.002

Density (water = 1) 5.60 5.20 5.52 3.95 1.31 0.704 1.21 1.67 2.03

Surface value of g,c m/s2 3.78 8.60 9.78 3.72 22.9 9.05 7.77 11.0 0.5

Escape velocity,c km/s 4.3 10.3 11.2 5.0 59.5 35.6 21.2 23.6 1.3

Known satellites 0 0 1 2 67 + ring 62 + rings 27 + rings 13 + rings 4

aMeasured with respect to the distant stars.
bVenus and Uranus rotate opposite their orbital motion.
cGravitational acceleration measured at the planet’s equator.
dPluto is now classified as a dwarf planet.
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